Distinct roles of p130Cas and c-Cbl in adhesion-induced or macrophage colony-stimulating factor-mediated signaling pathways in prefusion osteoclasts.
نویسندگان
چکیده
Both p130Cas and c-Cbl have been reported to play critical roles in osteoclast function as downstream targets of c-Src kinase. The purpose of this study was to examine adhesion- and macrophage colony-stimulating factor (M-CSF)-induced tyrosine phosphorylation of these two molecules in prefusion osteoclasts (pOCs) derived from either Src+/? or Src-/- mice and to directly compare the roles of p130Cas and c-Cbl in osteoclast function. Cell attachment of normal pOCs to vitronectin induces tyrosine phosphorylation of p130Cas and, to a much lesser extent, of c-Cbl. Treatment with M-CSF results in further tyrosine phosphorylation of both p130Cas and c-Cbl, suggesting cooperation between alpha v beta 3 integrin and the M-CSF receptor, c-Fms, in osteoclasts. However, M-CSF induces tyrosine phosphorylation of c-Cbl, but not p130Cas in pOCs in suspension, confirming the role of c-Cbl as a downstream effector of c-Fms. This observation also suggests that M-CSF-mediated p130Cas phosphorylation requires ligand engagement of alpha v beta 3 integrin. In Src-deficient pOCs plated on vitronectin, although M-CSF highly induces Cbl phosphorylation, it does not affect p130Cas phosphorylation. These results suggest that in osteoclasts 1) tyrosine phosphorylation of p130Cas depends on alpha v beta 3 integrin-mediated cell adhesion, even in the presence of M-CSF; 2) on the other hand, c-Cbl phosphorylation is predominantly activated by M-CSF and is independent of cell adhesion; 3) lastly, although c-Src is essential for both adhesion- and M-CSF-mediated phosphorylation of p130Cas, it is clearly not required for c-Cbl phosphorylation in M-CSF-treated pOCs. Taken together, p130Cas and c-Cbl play distinct roles in the signal transduction pathways that mediate cytoskeletal organization in osteoclasts.
منابع مشابه
Convergence of αvβ3Integrin–And Macrophage Colony Stimulating Factor–Mediated Signals on Phospholipase Cγ in Prefusion Osteoclasts
The macrophage colony stimulating factor (M-CSF) and alpha(v)beta(3) integrins play critical roles in osteoclast function. This study examines M-CSF- and adhesion-induced signaling in prefusion osteoclasts (pOCs) derived from Src-deficient and wild-type mice. Src-deficient cells attach to but do not spread on vitronectin (Vn)-coated surfaces and, contrary to wild-type cells, their adhesion does...
متن کامل2-(Trimethylammonium) Ethyl (R)-3-Methoxy-3-oxo-2-Stearamidopropyl Phosphate Suppresses Osteoclast Maturation and Bone Resorption by Targeting Macrophage-Colony Stimulating Factor Signaling
2-(Trimethylammonium) ethyl (R)-3-methoxy-3-oxo-2-stearamidopropyl phosphate [(R)-TEMOSPho], a derivative of an organic chemical identified from a natural product library, promotes highly efficient megakaryopoiesis. Here, we show that (R)-TEMOSPho blocks osteoclast maturation from progenitor cells of hematopoietic origin, as well as blocking the resorptive function of mature osteoclasts. The in...
متن کاملSignaling Pathways in Osteoclast Differentiation
Osteoclasts are multinucleated cells of hematopoietic origin that are responsible for the degradation of old bone matrix. Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-κB ligand (RANKL). M-CSF and RANKL bind to their respective receptors c-Fms and RANK to stimulate oste...
متن کاملBone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappaB ligand.
Bone is a major storage site for TGFbeta superfamily members, including TGFbeta and bone morphogenetic proteins. It is believed that these cytokines are released from bone during bone resorption. Recent studies have shown that both RANKL and macrophage colony-stimulating factor are two essential factors produced by osteoblasts for inducing osteoclast differentiation. In the present study we exa...
متن کاملAttenuation of RANKL-induced Osteoclast Formation via p38-mediated NFATc1 Signaling Pathways by Extract of Euphorbia Lathyris L
BACKGROUND Osteoclasts are the only cell type capable of breaking down bone matrix, and its excessive activation is responsible for the development of bone-destructive diseases. Euphorbia lathyris L. (ELL) is an herbal plant that belongs to the Euphorbiaceae family. This study investigated the effects of the methanol extract of the aerial part of ELL on receptor activator of nuclear factor-kapp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 144 11 شماره
صفحات -
تاریخ انتشار 2003